Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 15» городского округа Спасск-Дальний

ПРИНЯТА на заседании педагогического совета Протокол № 9 от 26.09. 2025 г.

СОГЛАСОВАНА с Управляющим советом школы

УТВЕРЖДЕНА приказом директора МБОУ СОШ № 15 № 170-а от 29.08. 2025 г.

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности «Практикум по физике» для обучающихся 10 классов

Пояснительная записка

Данный курс предназначен для обучающихся 10 классов общеобразовательных учреждений, изучающих физику на базовом уровне, но интересующихся физикой и планирующих сдавать единый государственный экзамен по предмету.

Программа курса соответствует государственному стандарту физического образования и учитывает цели обучения по физике учащихся средней школы. Материал излагается на теоретической основе, включающей вопросы классической механики, молекулярной физики, электродинамики, оптики и квантовой физики. Курс рассчитан на 17 часов (0,5 часа в неделю). Программа разработана с таким расчетом, чтобы учащиеся получили достаточно глубокие знания по физике, необходимые для сдачи ЕГЭ.

Задачи курса:

• приобретение определенной техники решения задач по физике в соответствии с возрастающими требованиями современного уровня процессов во всех областях жизнедеятельности человека.

Одно из труднейших звеньев учебного процесса — научить учащихся решать задачи. Чаще всего физику считают трудным предметом, так как многие плохо справляются с решение задач.

Цель курса:

- развитие самостоятельности мышления учащихся, умения анализировать, обобщать:
- формирование метода научного познания явлений природы как базы для интеграции знаний;
- создание условий для самореализации учащихся в процессе обучения.

Учащиеся, в ходе занятий, приобретут:

- -навыки самостоятельной работы;
- -овладеют умениями анализировать условие задачи, переформулировать и перемоделировать, заменять исходную задачу другой задачей или делить на подзадачи; -составлять план решения,
- -проверять предлагаемые для решения гипотезы (т.е. владеть основными умственными операциями, составляющими поиск решения задачи).

Программа курса: 17 часов, 0,5 ч в неделю.

Кинематика(3ч)

Кинематика материальной точки. Графическое представление неравномерного движения. Вращательное движение твердого тела.

2. Основы динамики. (4ч)

Стандартные ситуации динамики (наклонная плоскость, связанные тела).

Движение под действием нескольких сил в горизонтальном и вертикальном направлении. Движение под действием нескольких сил: вращательное движение. Динамика в поле сил.

3. Законы сохранения.(4ч)

Закон сохранения импульса. Реактивное движение.

Закон сохранения энергии. Правила преобразования сил. Условия равновесия и виды равновесия тел.

4. Основы МКТ и термодинамики.(3ч)

Температура. Энергия теплового движения молекул. Уравнение газа. Изопроцессы в идеальном газе. Изменение внутренней энергии тел в процессе теплопередачи.

5. Электростатика.(3ч)

Закон Кулона. Напряженность электрического поля. Конденсаторы. Энергия заряженного конденсатора. Закон Ома для участка цепи. Соединение проводников. Закон Ома для полной цепи. Правила Кирхгофа. Закон электролиза.

Учебно-тематический план:

	T	<i>y</i> 40	оно-тематический план:	
№ п/п	Раздел/ вид деятельности	кол- во часов	Содержание	План. дата
	Кинематика.	3		
1	Вводная лекция.	1	Кинематика материальной точки (произвольное движение; равномерное	
			прямолинейное; равнопеременное прямолинейное; равномерное движение по окружности.)	
2	Семинар, решение задач.	1	Графическое представление неравномерног о движения.	
3	Анализ решения задач.	1	Вращательное движение твердого тела.	
	Основы динамики.	4	-	
4	Лекция.	1	Стандартные ситуации динамики (наклонная плоскость, связанные тела)	
5	Семинар, решение задач.	1	Движение под действием нескольких сил в горизонтальном и вертикальном направлении.	
6	Семинар, решение задач.	1	Движение под действием нескольких сил: вращательное движение.	
7	Анализ решения задач.	1	Динамика в поле сил (вес; сила тяжести; сила тяготения; сила упругости; сила трения).	
	Законы сохранения.	4		
8	Лекция. Семинар, решение задач.	1	Закон сохранения импульса. Реактивное движение.	
9	Лекция. Семинар, решение задач.	1	Закон сохранения энергии.	
10	Лекция. Анализ решения задач.	1	Правила преобразования сил. Условия равновесия и виды равновесия тел.	
11	Проверка и контроль знаний.	1	Комбинированные задачи. Презентации.	
	Основы МКТ и термодинамики	3		
12	Лекция.	1	Температура. Энергия теплового движения молекул.	
13	Семинар.	1	Уравнение газа. Изопроцессы в идеальном газе.	
14	Семинар.	1	Изменение внутренней энергии тел в процессе теплопередачи.	
	Электростатика	3		
15	Лекция.	1	Закон Кулона. Напряженность электрического поля. Конденсаторы. Энергия заряженного конденсатора.	
16	Семинар.	1	Закон Ома для участка цепи. Соединение проводников.	
17	Семинар.	1	Закон Ома для полной цепи. Правила Кирхгофа. Закон электролиза.	

Задания для подготовки к занятиям.

Тема 1. Кинематика.

- 1. Движения двух велосипедистов заданы уравнениями: x1=5t, x2=150- 10t. Построить графики зависимости x(t). Найти время и место встречи.
- 2. Скоростной лифт в высотном здании поднимается равномерно со скоростью 3м/с. Начертить график перемещения, определить по графику время, в течение которого лифт достигнет высоты 90м(26этаж).
- 3. Поезд движется со скоростью 20м/с. При торможении до полной остановки он прошел расстояние в 200м. Определить время, в течение которого происходило торможение.
- 4. Уравнение движения материальной точки имеет вид x=-3tI. Определить перемещение и скорость точки через 2секунды.
- 5. Свободно падающее тело за последнюю секунду прошло 2/3 всего пути. Найти путь, пройденный телом за все время падения.
- 6. Скорость точек экватора Солнца при его вращении вокруг своей оси 2км/с. Найти период вращения Солнца вокруг своей оси и центростремительное ускорение точек экватора.
- 7. Какое расстояние пройдет велосипедист при 60 оборотах педалей, если диаметр колеса 70 см, ведущая зубчатка имеет 48 зубцов, а ведомая- 18 зубцов?
- 8. Две материальные точки движутся по окружности радиусами R1 и R 2,причем R1=2 R 2. Сравнить их центростремительные ускорения, если равны их периоды обращения.

Тема 2.Основы динамики.

- 1. Автомобиль массой 1т поднимается по шоссе с уклоном 30ε под действием силы тяги $7\kappa H$. Найти ускорение автомобиля, считая, что сила сопротивления не зависит от скорости движения. Коэффициент сопротивления равен 0,1. Ускорение свободного падения принять равным за 10м/cI.
- 2. Тело массой 1кг, подвешенное на нити длиной 1м,описывает окружность с постоянной угловой скоростью, совершая 1об/с. Определить модуль силы упругости нити F и угол б, который образует нить с вертикалью.
- 3. На штанге укреплен невесомый блок, через который перекинута нить с двумя грузами, массы которых 500г и 100г. Во втором грузе имеется отверстие, через которое проходит штанга. Сила трения груза о штангу постоянна и равна 13Н. найти ускорение грузов и силу натяжения нити.
- 4. Самолет делает «мертвую петлю» радиусом R=255м. Какую наименьшую по величине скорость х должен иметь он в верхней точке траектории, чтобы летчик не повис на ремнях, которыми он пристегнут к креслу.
- 5. Лыжник начал спуск по плоскому склону, наклоненному к горизонту под углом 30є. Считая, что коэффициент трения скольжения м=0,1, а ускорение свободного падения 10м/сІ, вычислить скорость, которую он приобретет через 6секунд.

Тема 3. Законы сохранения.

- 1. Взрыв разрывает камень на три части. Два осколка летят под прямым углом друг к другу: осколок массой 1кг имеет скорость 12м/с, а осколок массой 2кг скорость 8м/с. Третий осколок отлетает со скоростью 40м/с. Какова масса и направление движения третьего осколка?
- 2. Охотник стреляет с легкой надувной лодки, находящейся в покое. Какую скорость приобретет лодка в момент выстрела, если масса охотника вместе с лодкой равна 120кг,

масса дроби -35г, начальная скорость дроби равна 3220м/с? Ствол ружья во время выстрела направлен под углом 60ϵ к горизонту.

3. Навстречу платформе с песком, движущейся горизонтально со скоростью x, по гладкому желобу соскальзывает без начальной скорости тело массой m и застревает в песке. Желоб длины l образует с горизонтом угол б. Найти скорость движения платформы после попадания в нее тела. Масса платформы M.

Тема 4. Основы МКТ и термодинамики.

- 1. В баллоне находилось некоторое количество газа при нормальном атмосферном давлении. При открытом вентиле баллон был нагрет, после чего вентиль закрыли и газ остыл до температуры 283К. При этом давление баллона упало до 70кПа. На сколько нагрели баллон?
- 2. Вследствии того, что в барометрическую трубку попал воздух при температуре 253К и давлении 770мм рт.ст., барометр показывает давление 765 мм рт.ст. Какое давление покажет барометр при нормальных условиях? Длина трубки 1м, тепловое расширение ртути не учитывать.
- 3. Трубка длиной 1 и сечением S запаяна с одного конца и подвешена к динамометру открытым концом вниз. В трубке находится воздух, запертый столбиком ртути, доходящей до открытого конца трубки. Показания динамометра F. С каким ускорением а нужно поднимать систему, чтобы показания динамометра возросли вдвое? Атмосферное давление р, сопротивлением воздуха и массой трубки пренебречь.

Тема 5. Электростатика.

- 1. Переменное магнитное поле, сосредоточенное вблизи оси кольца, создает в нем ЭДС индукции е. Ось симметрии поля проходит через центр кольца перпендикулярно его плоскости. На кольце выбран участок, равный трети длины кольца, и к нему параллельно подключен проводник сопротивлением R, расположенный вне магнитного поля. Чему равна сила тока в этом проводнике, если сопротивление провода, из которого сделано кольцо, равно 2R?
- 2. Пучок электронов, пройдя ускоряющую разность потенциалов U $_{\circ}$ =10 кB, влетает в середину между пластинами плоского конденсатора параллельно им. Какое напряжение необходимо подать на пластины конденсатора , чтобы пучок электронов при выходе из конденсатора отклонялся от своего начального направления на максимальный угол? Длина пластин l=10см, расстояние между ними d=3см.